Scalable and Visualization-oriented Clustering for Exploratory Spatial Analysis

نویسندگان

  • J. H. Guan
  • F. B. Zhu
  • F. L. Bian
چکیده

Clustering can be applied to many fields including data mining, statistical data analysis, pattern recognition, image processing etc. In the past decade, a lot of efficient and effective new clustering algorithms have been proposed, in which famous algorithms contributed from the database community are CLARANS, BIRCH, DBSCAN, CURE, STING, CLIGUE and WaveCluster. All these algorithms try to challenge the problem of handling huge amount of data in large-scale databases. In this paper, we propose a scalable and visualization-oriented clustering algorithm for exploratory spatial analysis (CAESA). The context of our research is 2D spatial data analysis, but the method can be extended to higher dimensional space. Here, “Scalable” means our algorithm can run focus-changing clustering in an efficient way, and “Visualization-oriented” indicates that our algorithm is adaptable to the visualization situation, that is, choosing appropriate clustering granularity automatically according to current visualization resolution. Experimental results show that our algorithm is effective and efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

gCLUTO – An Interactive Clustering , Visualization , and Analysis System ∗

Clustering algorithms are exploratory data analysis tools that have proved to be essential for gaining valuable insights on various aspects and relationships of the underlying systems. In this paper we present gCLUTO, a stand-alone clustering software package which serves as an easy-to-use platform that combines clustering algorithms along with a number of analysis, reporting, and visualization...

متن کامل

Unsupervised analysis of MS images using Cardinal

2 Analysis of a pig fetus wholy body cross section 1 2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Peak picking and alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Visualizin...

متن کامل

GeoSTAT - A System for Visualization, Analysis and Clustering of Distributed Spatiotemporal Data

Nowadays, there is a considerable amount of spatiotemporal data available on the web. The visualization of these data requires several visual resources which helps users to have a correct interpretation of the data set. Furthermore, the use of data mining algorithms has proven relevant in helping the exploratory analysis of spatiotemporal data. This paper proposes the GeoSTAT (GEOgraphic Spatio...

متن کامل

Evaluating exploratory visualization systems: A user study on how clustering-based visualization systems support information seeking from large document collections

Iterative, opportunistic and evolving visual sensemaking has been an important research topic as it assists users in overcoming ever-increasing information overload. Exploratory visualization systems (EVSs) maximize users’ information gain through learning and have been widely used in scientific discovery and decision making contexts. Although many EVSs have been developed recently, there is a ...

متن کامل

Geographical Analysis of COVID-19 Epidemiology in Iran with Exploratory Spatial Data Analysis Approach (ESDA)

Background and Aim: The use of geophysical analysis of the epidemiology to identify geographical factors affecting the prevalence of the disease can be effective on community health policies to control the prevalence of the virus. Therefore, the present study is a geographical analysis of the COVID-19 epidemiology in Iran. Therefore, the purpose of this study is the geographical analysis of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004